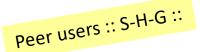


iSWAT H1+2 Clusters: CME Propagation Through Ambient Solar Wind

Manuela Temmer¹, Mario Bisi², Camilla Scolini³

- ¹ University of Graz, Austria
- ² RAL Space, UK
- ³ University of New Hampshire, USA


iSWAT Workshop :: September 13-17, 2021 :: online

iSWAT structure and connection between H1+H2

https://www.iswat-cospar.org/

S: Space weather origins at the Sun	H: Heliosphere variability	G: Coupled geospace system	Impacts
S1: Long-term solar variability	H1: Heliospheric magnetic field and solar wind	G1: Geomagnetic environment	Climate Electric power
S2: Ambient solar magnetic field, heating and spectral irradiance	H2: CME structure, evolution and propagation through heliosphere	G2a: Atmosphere variability	systems/GICs Satellite/debris drag
S3: Solar eruptions	H3: Radiation environment in heliosphere	G2b: lonosphere variability	Navigation/ Communications
	H4: Space weather at other planets/planetary bodies	G3: Near-Earth radiation and plasma environment	(Aero)space assets functions
Overarching Activities: Assessment Innovative Solutions	ment Information Architecture & Data Utilization		

Connecting S – H – G focusing on H

L1: ACE, Wind, DSCOVR, STA

Sun (S)

- Dynamic (recurrent) interplay between open and closed magnetic field (SIR/CIR, HSS)
- Short-term variations (flare, CME, SEP)
- Long-term variations (solar cycle)

Input to H-models CME: magnetic field, speed, size, location; background solar wind, SIR/CIR location, ...

Solar wind, SIR, HSS
CME, ICME
Mutual interaction
SEP propagation

Heliosphere (H)

- Structure and evolution of IP space (variations on different spatial and temporal scales)
- SIRs/CIRs formation and propagation (including arrival characteristics at targets)
- CME propagation behavior (drag force, arrival characteristics at targets)
- Interaction phenomena (HSSs-CMEs, CIRs/SIRs-CMEs, CME-CME)
- o Data and models
- o Metrics and validation procedures

Geospace (G)

- Energy input
- Magnetosphere coupling
- Ionosphere, Thermosphere
- Ground effects (GIC)

Output from H-models

impact and arrival characteristics of HSSs/SIRs/CIRs and transient events

UNIVERSITY OF GRAZ

Teams

- H1-01: Ambient Solar Wind Validation Working Team
 (M. Reiss / K.Muglach) Splinter Sep 15, 16:30-18:30UT
- H1-02: Heliospheric Radio Diagnostics of the Background Solar Wind (R. Fallows) – Splinter Sep 28, 08:30-10:30UT and 16:30-18:30UT
- H2-01: CME Arrival Time and Impact Working Team
 (C. Verbeke / L. Mays) Splinter Sep 28, 16:30-18:30UT
- H2-02: Magnetic Profiles of Interplanetary CMEs (C. Kay)
- H2-03: CME model evaluations through synthetic observations
 (Luke Barnard, Tanja Amerstorfer) Splinter Sep 27, 08:30-10:30UT

Workshop Goals

"COSPAR Roadmap preparation"

Day 1 - Sep 14, 16:30-18:30UT

Discussion of paper structure Agree on timeline

All team leads - action: prepare reference list of recent and future papers related to the team

Day 2 - Sep 27, 16:30-18:30UT

Working title
Fix leads and team for each chapter
Overleaf document
Proof-readers? Names!

ISWAT is a huge platform to connect people with different expertise but same overall goals

Make methods and tools available for (early career) colleagues to jump in and get trained for future Space Weather research

Discussion topics and input for Roadmap

Global scale:

• Structure and evolution of interplanetary space throughout the heliosphere

Large scale:

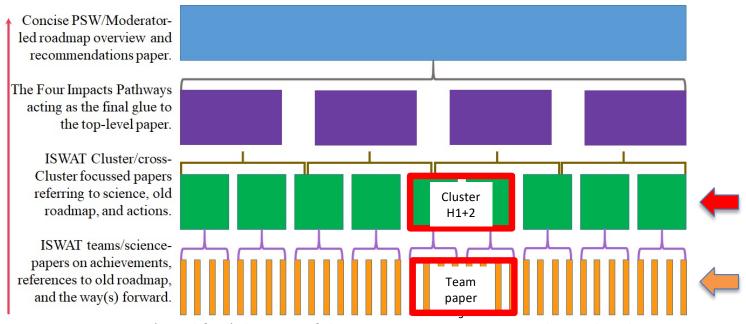
- SIRs/CIRs formation and propagation (including arrival characteristics at targets)
- CME propagation behavior (drag force, arrival characteristics at targets)
- Interaction phenomena (HSSs-CMEs, CIRs/SIRs-CMEs, CME-CME)

Forward information - Cluster G:

Geospace energy input (impact of HSSs/SIRs/CIRs and transient events)

Backward information - Cluster S:

 Review of observational input to models (including current uncertainties in inputs=>outputs, and future requirements for improvement)


General:

 Development of metrics for objective model tests, comparison, validation and further improvement

Together we prepare for the COSPAR Space Weather Roadmap

- Cluster H1+2 centered forward looking paper.
- Make it a strong paper useful for the community, i.e., peer-users, and practical guide for the next generation.
- Provide application to everyday's work.

Overview (simplified) diagram of the papers structure torming the Updated COSPAR Space Weather Roadmap.

COSPAR Space Weather Roadmap Cluster H1+2 paper

https://docs.google.com/document/d/1H SYyl1cqHRE3ggGSbMMkAJmtN ynTovci97g9xM6JEc/edit?usp=sharing

https://join.slack.com/t/slack-s9r5931/shared invite/zt-s47u9gqu-5MMyMcmNNCrcpzPRUb phw